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Abstract. This paper presents DECIPHeR (Dynamic fluxEs and Connectlvity for
Predictions of HydRology); a new flexible model framework that simulates and predicts
hydrologic flows from spatial scales of small headwater catchments to entire continents.
DeCIPHER can be adapted to specific hydrologic settings and available data and modified to
represent different levels of heterogeneity, connectivity and hydrological processes as
needed. It has an automated build function that allows rapid set-up across required model
domains and is open source to help researchers and/or practitioners use the model.
DeCIPHER is applied across Great Britain to demonstrate the model framework and
evaluated against daily flow time series from 1,366 gauges for four evaluation metrics to
provide a benchmark of model performance. Results show the model performs well across a
range of catchment characteristics but particularly in wetter catchments in the West and
North of Great Britain. Future model developments will focus on adding modules to
DECIPHeR to improve the representation of groundwater dynamics and human influences.
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1 Introduction

Water resources require careful management to ensure adequate potable and industrial
supply, to support the economic and recreational value of water, and to minimise the impacts
of hydrological extremes such as droughts and floods. Robust simulations and predictions of
river flows are increasingly needed across multiple temporal and spatial scales to support
such management strategies (Wagener et al., 2010) that may range from the assessment of
local field-scale flood mitigation measures to emerging water challenges at regional to
continental scales (Archfield Stacey A. et al., 2015). Such approaches are particularly
important, indeed mandated, given national and international policies on water management,
such as the European Union’s Water Framework Directive (EC, 2000) and Floods Directive
(EC, 2007), where (inter)national information on water resources, low and high flows is
needed to underpin robust environmental management and policy decisions. This requires the
effective integration of field observations and numerical modelling tools to provide tailored
outputs at gauged and ungauged locations across a wide range of scales relevant to policy
makers and societal needs. Consequently there is a pressing need to develop new flexible
modelling tools that can be applied to a range of space- and time- scales, and that are based
on general hydrological principles applicable to a broad spectrum of different catchment

types.

The hydrologic community has made substantial investments to develop and apply
hydrological models over the past 50 years to produce simulations and predictions of surface
and groundwater flows, evaporation and soil moisture storage at multiple scales. The current
generation of hydrological models can represent a range of physical processes and spatial
complexity, for example: gridded approaches such as Grid-to-Grid (Bell et al., 2007), VIC
(Hamman et al., 2018; Liang et al., 1994), SHETRAN (Lewis et al., 2018), Multiscale
Hydrologic Model (Samaniego et al., 2010) and the DK-model (Henriksen et al., 2003);
semi-distributed approaches that aggregate the landscape into hydrologic response units or
sub-catchments, such as HYPE (Lindstrom et al., 2010), SWAT (Arnold et al., 1998) and
Topnet (Clark et al., 2008b); and conceptual models applied at the catchment scale (Beven
and Kirkby, 1979; Burnash, 1995; Coron et al., 2017; Leavesley et al., 1996; Lindstrom et al.,
1997; Zhao, 1984). Whilst all these models have provided useful insights and relevant
outputs, the underlying model structures do not have the flexibility to represent different
levels of complexity in different landscapes. For example, they either tend to: have a fixed
representation of spatial variability (i.e. a single spatial resolution or a single spatial structure
such as raster based); have a lack of spatial connectivity between hillslope and riverine
components; be computationally expensive; and/or employ a single model structure applied
homogenously across the model domain or nested catchment scale.

Hydrological models need to represent the complex drivers of catchment behaviour, such as
space- and time- varying climate, land cover, human influence etc., to capture the resulting
heterogeneous hydrological responses and changing landscape connectivity (Bl6schl and
Sivapalan, 1995). There is little consensus to define the appropriate spatial complexity and
hydrologic connectivity needed to represent relevant processes nor which processes are
required to achieve different modelling objectives. This is despite significant development of
various modelling tools: hyper-resolution models to represent spatial heterogeneity at finer
scales (Bierkens et al., 2015; Wood et al., 2011) and multi-model frameworks, to test
competing hypotheses of catchment behaviour, such as FUSE (Clark et al., 2008a) and
SUPERFLEX (Fenicia et al., 2011; Kavetski and Fenicia, 2011).
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The key constraints to model development have been the lack of appropriate datasets and
available computing power to run ensembles of complex simulations within reasonable
timeframes. However, national and global open-source datasets are becoming readily
available and significant gains in computing power have mitigated these constraints, to
present the hydrological community with greater ability to build more flexible hydrological
models that can resolve small-scale features in the landscape and be applied across
continental scales to produce ensembles of flow simulations and predictions for a wide range
of scales and water challenges. The need for such approaches is well documented in the
literature (Clark et al., 2011, 2015; Mendoza et al., 2015) with calls for flexible hydrological
modelling systems to: (1) incorporate different model structures and parameterisations in
different parts of the landscape to represent a variety of processes; (2) change their spatial
complexity, variability and/or hydrologic connectivity for hillslope elements and river
network reaches (Beven and Freer, 2001; Mendoza et al., 2015); and, (3) be applied across a
wide range of spatial and temporal scales. However, few such models exist.

We have therefore created a new flexible model framework, DECIPHeR (Dynamic fluxEs
and Connectlvity for Predictions of HydRology), to be used to simulate and predict
hydrologic flows and connectivity from spatial scales of small headwater catchments to entire
continents. The model can be adapted to specific hydrologic settings and available data and
can be modified to represent different levels of heterogeneity, connectivity and hydrological
processes as needed. DECIPHeR has an automated build function that allows rapid set-up
across required model domains with limited user input. The underlying code has been
optimised to run large ensembles and enable model uncertainty to be fully explored. This is
particularly important given inherent uncertainties in hydro-climatic datasets (Coxon et al.,
2015; McMillan et al., 2012) and their impact on model calibration, regionalisation and
evaluation (Freer et al., 2004; Kavetski et al., 2006; Kuczera et al., 2010; McMillan et al.,
2010, 2011; Westerberg et al., 2016). We have specifically made the model code readable,
reusable and open source to allow the broader community to learn from, verify and advance
the work described here (Buytaert et al., 2008; Hutton et al., 2016).

In this paper, we: (1) describe the key capabilities and concepts that underpin DECIPHeR; (2)
provide a detailed discussion of the model code and components; (3) demonstrate its
application at the national scale to 1,366 catchments in Great Britain (GB); and, (4) discuss
potential future model developments.

2 The DECIPHeR Modelling Framework

2.1 Key Concepts

The modelling framework builds on the code and key concepts of Dynamic TOPMODEL.
Dynamic TOPMODEL was originally introduced by (Beven and Freer, 2001) and has since
been applied in a wide range of studies (Freer et al., 2004; Liu et al., 2009, p.200; Metcalfe et
al., 2017; Page et al., 2007; Younger et al., 2008) and integrated into other modelling
frameworks (e.g. HydroBlocks, (Chaney et al., 2016). While the key concepts that underpin
Dynamic TOPMODEL address many of the challenges outlined in the introduction, for the
most part it has only ever been applied to a single catchment or very simple nested gauge
networks in headwater catchments (Peters et al., 2003). Consequently, we have made several
key advances in flexibility and in automation so the model can be applied from single small
headwater catchments to regional, national and continental scales.

The DECIPHeR modelling framework:
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1. Can be easily applied to a single or multiple catchment(s), across large scales and
complex river networks because it has an automated model building facility.

2. Can produce flow simulations for any gauged or ungauged point on a river network,
and segment river reaches into any length for individual hillslope-river flux
contributions.

3. Can (a) experiment with different landscape and climate attributes to characterise
different spatial model structures and parameterisations and (b) modify the spatial
scale/complexity of how spatial variability and hydrologic flow path connectivity are
represented via its flexible modelling framework

4. Can easily allow different model hypotheses of catchment behaviour to be added
because it is modular and extensible.

5. Can run large model ensembles to characterise model uncertainty because it is
computationally efficient

6. Can be easily adopted and adapted because it is open source and includes a detailed
user manual

DECIPHeR provides the capability to tackle fundamental hydrological modelling challenges
and address general as well as site specific problems. To realise this, DECIPHeR uses
hydrological response units (HRUS) to group together raster-based information into non-
contiguous spatial elements in the landscape that share similar characteristics (see Figure 1).
Importantly, these are not just fractions of the landscape with no explicit geographical
location. Each HRU maintains hydrological connectivity in the landscape via weightings that
determine the proportions of lateral subsurface flux from each HRU to all other connected
HRUs, within itself and flows to river cells. The user can split up the catchment in any
configuration to change the representation of spatial complexity and hydrologic connectivity
using, for example, different landscape attributes (e.g. geology, land use) and/or spatially
varying inputs (e.g. rainfall, evaporation, etc.) to define similarity. Each HRU is treated as a
separate store in the model which can have different process conceptualisations and
parameterisations so that more process complexity can be incorporated where needed to
better suit local conditions (e.g. to account for ‘point-source’ human influences or more
complex hydrological processes such as surface-groundwater exchanges). HRUs minimise
run times of the model compared to grid or fully distributed based formulations and still
allows model simulations to be mapped back into space.

HRUs are defined prior to rainfall-runoff modelling and DECIPHeR consists of two key steps
where (1) digital terrain analyses are performed to define the gauge network, set up the river
network and routing, discretise the catchment into HRUs and characterise the spatial
variability and hydrologic connectivity in the landscape, and (2) HRUs are run in the rainfall
runoff model to provide flow timeseries. These two steps are described in the following
sections. More detailed descriptions of the input and output files, code workflows and codes
can be found in the user manual.

2.2 Digital Terrain Analysis (DTA)
2.2.1 General Overview

The DTA in DECIPHeR constructs the spatial topology of the model components to define
hillslope and riverine elements. The DTA defines the spatial extent of every HRU based upon
multiple attributes, quantifies the connectivity between these HRU’s in the landscape,
determines the river network and all downstream routing properties, and determines the
extent and where simulated output variables (i.e. discharge) should be produced (including
gauged or ungauged locations) (see Figure 1).
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While the DTA builds on the original Dynamic TOPMODEL code, several key advances
have been made in the new version including:

1. The process can be fully automated enabling multiple catchments and/or the
processing of national scale data to be easily and quickly processed to build models in
complex multi-catchment regions

2. Code has been updated to a FORTRAN 2003 compliant version with new array and
memory handling to allowing large, complex gauging networks to be processed in
ways which is computationally efficient

3. Greater flexibility in the complexity and spatial properties of river network and
routing properties- separate flow pathway contributions of hillslope to river reach
elements can be defined for any reach length

2.2.2 Data Prerequisites

The minimum data requirement to run the DTA is a digital elevation model (DEM) and XY
locations where flow time series is needed on the river network. The digital elevation model
must contain no sinks or flat areas to ensure that the river network and catchments can be
properly delineated.

Additional data can also be incorporated depending on data availability and modelling
objectives. A river network can be supplied if the user wishes to specify headwater cells
from a predefined river network and reference catchment areas and masks can be used to
identify the best station location on the river network. Depending on user requirements,
topographic, land use, geology, soils, anthropogenic and climate attributes can be supplied to
define the spatial topology and thus differences in model inputs, structure and
parameterisation.

2.2.3 River Network, Catchment Identification and River Routing

DECIPHeR generates streamflow estimates at any point on the river network specified by the
user. A river network is generated in DECIPHeR which matches the DEM flow direction and
always connects to the boundary of the DEM or the sea. The river network is created from a
list of headwater cells, which the functions can use/produce in three different ways depending
on user requirements and/or data availability:

1. Alist of pre-defined headwater (i.e. starting) river locations read into the DTA
algorithms from a file

2. Headwater cells are found from a pre-defined river network

3. Where no pre-defined river network or headwater locations are available, then
headwater cells are found from a river network which is derived from cells that meet
thresholds of accumulated area and/or topographic index

Each headwater location is then routed downstream in a single flow direction via the steepest
slope until reaching a sea outlet, other river or edge of the DEM, to construct a contiguous
river network for the whole area of interest. Gauge locations are then generated on the river
network from the point locations specified by the user. If a reference catchment mask or area
is available, catchment masks are produced for candidate river cells found in a given radius
and the catchment mask with the best fit to the reference mask or area is chosen as the gauge
location. Otherwise the closest river cell is chosen as the gauge location.

Catchment masks are created from the final gauge list, with both individual masks for all the
points specified on the river network and a combined catchment mask with the nested
catchment masks created for use in the creation of the hydrological response units. From the

5
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river network and gauge locations, the river network connectivity is derived with each river
section labelled with a unique river ID and a suite of routing tables so that each ID knows it’s
downstream connections and to allow multiple routing schemes to be configured. These
codes also provide the option of setting a river reach length where output time series can also
be specified at different reach lengths between gauges (see Figure 1, HRU Setup D).

2.2.4 Topographic Analysis

Topography, slope, accumulated area and topographic index are important properties of the
landscape to aid the definition of hydrologic similarity and more dominant flow pathways.

In DECIPHeR, they provide the basis for river routing and river network configuration and
they also can be used to help determine the initial separation of landscape elements for
defining hydrological similarity using percentiles of accumulated area, elevation and slope (in
addition to alternative catchment attributes such as urban extent, geology, landuse, soils etc.).

Topographic index is calculated using the M8 multiple flow directional algorithm of (Quinn
etal., 1995). The DTA calculates slope, accumulated area and topographic index for the
whole domain. It uses the river mask to define the cells where accumulated area cannot
accumulate downstream and the catchment mask to ensure accumulated area does not
accumulate across nested catchment boundaries.

2.2.5 Hydrological Response Units

The most critical aspect of running DECIPHeR is to define HRU’s according to user
requirements. The HRU configuration determines the spatial connectivity and complexity of
model conceptualisation as well as the spatial variability of inputs and conceptual structure
and parameters to be implemented in each part of the landscape. Any number of different
spatial discretisations can be derived and subsequently applied in the DECIPHeR framework
allowing the user to experiment with different model structures and parameterisations and
modify representations of spatial variability and hydrologic connectivity.

In the DTA, hydrologically similar points in the landscape are grouped together so that each
HRU is a unique combination of four different classification layers. These specify: (1) the
initial separation of landscape elements from topographic information (e.g. slope,
accumulated area and/or elevation); (2) inputs; (3) process conceptualisations; and (4)
parameters implemented for each HRU store in the model (see Figure 2). These
classification layers can be derived from climatic inputs, such as spatially varying rainfall and
potential evapotranspiration, and landscape attributes such as geology, land use,
anthropogenic impacts, soils data, slope, accumulated area. The simplest setup will consist of
one HRU per catchment while the most complex can consist of a HRU for every grid cell (i.e.
fully distributed).

To maintain hydrological connectivity in the landscape, the proportions of flow between the
cells comprising each HRU are calculated based on accumulated area and slope. The flow
fractions are then aggregated into a flow distribution matrix that summarises the proportions
(weightings) of lateral subsurface flow from each HRU either to (1) itself, (2) another HRU
or (3) ariver reach. For n hydrological response units, the weights (W) are defined as:

Wi1 0 Win
Wni = Wnn

Equation 1
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Where each row defines how the HRU’s output is distributed to other HRU’s, any river
reaches or itself and each column represents the total input to each HRU at every time step as
the weighted sum of all the upstream outputs. Each row and column sum to one to ensure
mass balance. The weights are detailed in a HRU flux file (which is fixed for a simulation)
as a flow distribution matrix along with tabulated HRU attributes to provide information on
which inputs, parameter and model structure type each HRU is using.

2.3 Rainfall-Runoff Modelling
2.3.1 General Overview

Once the DTA is complete, the rainfall-runoff modelling can then be executed. While
DECIPHeR builds on the original Dynamic TOPMODEL code, several key advances were
made in the new version including:

1. Code has been updated to a FORTRAN 2003 compliant version with new array and
memory handling to allow large datasets at any spatial scale and any complexity of
gauging network to be processed to be commensurate with the DTA processing.

2. New river routing algorithms added to allow streamflow estimates to be computed at
any point on the river network and in any spatial configuration

3. New initialisation code added to ensure that multiple points on the river network can
be initialised via local storages and fluxes in each HRU successfully

4. New code to seamlessly facilitate DTA classification layers and results into rainfall
runoff model configuration that allows each individual HRU to have a different model
structure, parameters, and climatic inputs.

2.3.2 Data Pre-requisites

To run the rainfall-runoff modelling component of DECIPHeR, time series forcing data of
rainfall and potential evapotranspiration are required. Discharge data can also be provided
for gauged locations and are used to initialise the model.

Besides forcing data, the model also needs, (1) the HRU flux file and routing files produced
by the DTA, (2) a parameter file specifying set parameter bounds for Monte-Carlo sampling
of parameters and (3) project/settings files specifying the number of parameter sets to run,
which HRU and input file to use etc.

2.3.3 Initialisation

Initialisation is an important step for any rainfall-runoff model. To ensure that subsurface
flows, storages and the river discharge have all stabilised can be particularly problematic
when modelling regionally over a large area as not all HRU’s will initialise at the same rate
(depending on size and slope characteristics).

A simple homogenous initialisation is currently implemented in DECIPHeR where the
storage deficits for all HRU’s are determined from an initial discharge. This is calculated as
a mean area weighted discharge of the starting flows at timestep 1 for all output points on the
river network. If a gauge does not have an initial flow, then the initial flow is either
calculated from the mean of the data or set to a value of 1mm/day if no flow data is available.
The initial discharge is assumed to be solely due to the subsurface drainage into the river so is
used as the starting value for Qsat and to determine the associated storage and unsaturated
zone fluxes. The model is then run for an initialisation period to allow its internal states to
fully stabilise with the catchment climatic information. Initialisation periods depend in part to
the parameterisation of the model simulation run as well as the size and characteristics of the
catchment being considered.



Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-205
Manuscript under review for journal Geosci. Model Dev.

Discussion started: 24 September 2018

(© Author(s) 2018. CC BY 4.0 License.

10

15

20

25

30

35

40

2.3.4 Parameters

DECIPHeR can be run either using default parameter values or through Monte-Carlo
sampling of parameters between set parameter bounds to produce ensembles of river flows.
In the DTA, the user can set different parameter bounds for each HRU or sub-catchment thus
specifying areas of the landscape where different parameter bounds are needed.
Alternatively, a single set of parameter bounds can be applied across the model domain.

For the model structure provided in the standard build and described below, there are seven
parameters that can be sampled or set to default parameters. These parameters describe the
transmissivity of the subsurface, the water holding capacity and permeability of soils and the
channel routing velocity (see Table 1). More parameters can easily be added by the user if
required for different model structures by changing the model source code.

2.3.5 Model Structure

The description below details the model structure that is provided in the open source code
(see Figure 3 and Table 1). While the code is built to be modular and extensible so that a
user can easily implement multiple different model structures if so wished, the aim of this
paper and the initial focus of the code development was on applying the model across large
scales and not implementing multiple model structures. Thus, we provide a single model
structure in the open source code that serves as a model benchmark to be built upon in future
iterations.

The model structure consists of three stores defining the soil profile (Figure 4), which are
implemented as lumped stores for each HRU. The first store is the root zone storage (Srz).
Precipitation (P) is added to this store and then evapotranspiration (ET) is calculated and
removed directly from the root zone. The maximum specific storage of Srz is determined by
the parameter SRmax. Actual evapotranspiration from each HRU depends on the potential
evapotranspiration (PET) rate supplied by the user and the root zone storage using a simple
common formulation where evapotranspiration is removed at the full potential rate from
saturated areas (i.e. if the root zone storage is full) and at a rate proportional to the root zone
storage in unsaturated areas:

ET = PET * (Sgz/SRmax)
Equation 2

Once the root zone reaches maximum capacity (i.e. deficit of zero and conceptually
analogous to field capacity), any excess rainfall input that is remaining is either added to the
unsaturated zone (Su;) where it is routed to the subsurface store or if this store is also full,
Qexus is added to the saturation excess storage (Sex) and routed directly overland as saturated
excess overland flow (Qor). The unsaturated zone links the Srz and saturated zones
according to a linear function that includes a gravity drainage time delay parameter (Td) for
vertical routing through the unsaturated zone. The drainage flux (Quz) from the unsaturated
zone to the saturated zone is at a rate proportional to the ratio of unsaturated zone storage
(Suz) to storage deficit (Sp):

Quz = Suz/(Sp *Td)
Equation 3

The dryness of the saturated zone is represented by the storage deficit. Changes to storage
deficits for each HRU are dependent on recharge from Suz (Quz), fluxes from upslope HRUs
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(Qin) and downslope flow out of each HRU (Qsat) with subsurface flows for each HRU
distributed according to the DTA flow distribution matrix described in section 4.2.5.

E = Qsar — Qv — Quz

Equation 4

Transfers between HRUs (and subsequently to the stream channel) are calculated using a
kinematic wave formulation (Beven and Freer, 2001; Li et al., 1975; Metcalfe et al., 2015) for
downslope flow out of each HRU (Qsat) with both upslope (inputs) and local (for outputs)
storages required.

The parameter, SZM, sets the form of the exponential decline in saturated zone hydraulic
transmissivity with depth thereby controlling the shape of the recession curve in time. The
parameter In(TO) determines the lateral saturated hydraulic transmissivity at the point when
the soil is saturated. The parameter, Smax, Sets the saturated zone deficit threshold at which
downslope flows between HRUs no longer occurs. If Smax has been reached then no
downslope flow occurs and if the storage deficit is less than zero (the soil is at or above it’s
saturation capacity), then excess storage (Qexs) is added to saturation excess overland flow

(Qor).

Channel flow routing in DECIPHeR is modelled using a set of time delay histograms that are
derived from the digital terrain analyses for the points where output is required. A fixed
channel wave velocity (CHV) is applied throughout the network to account for delay and
attenuation in the simulated flows (Qsim). DECIPHeR is a mass conserving model and
therefore the model water balance always closes (subject to small rounding errors).

2.4 Model Implementation

The DECIPHeR model code is available on github (https://github.com/uob-
hydrology/DECIPHeR) and is accompanied by a user manual which provides a detailed
description of the file formats, how to run the codes and a code workflow. All the model
code is written in FORTRAN for its speed, efficiency and ability to process large scale spatial
datasets. Two additional bash scripts are provided as an example of calling the digital terrain
analysis codes.

3 Great Britain National Model Implementation and Evaluation

While the modelling framework has a wide range of functionality, in this paper we wanted to
demonstrate the ability of the model to be applied across a large domain to generate
ensembles of flows at thousands of gauging stations and evaluate its current capability across
large scales to guide future model developments. Consequently, we applied DECIPHeR to
1,366 gauges in Great Britain (GB) and in this section we describe the model setup, input
data, evaluation criteria and model results.

3.1 Great Britain Hydrology

Catchments in Great Britain (GB) cover a wide hydrologic and climatic diversity. Figure 4
shows the mean annual rainfall, mean annual potential evapotranspiration, runoff coefficient,
and slope of the flow duration curve between the 30 and 70 flow percentiles for the 1,366
catchments in this study. Rainfall is highest in the West and North of GB and lowest in the
East and South ranging from 540 to 3400 mm/year (Figure 4a), while evapotranspiration
losses are highest in the East and South and lowest in the West and North ranging from 370
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to 545 mm/year (Figure 4b). This regional divide of rainfall and PET is reflected in the
runoff coefficients (Figure 4c) where generally runoff coefficients are lowest in the East and
South and highest in the North and West. Slope of the flow duration curve (Figure 4d) is a
more mixed picture across GB with lower values (i.e. a less variable flow regime) found in
North-East Scotland, Midlands and patches of the South-East and higher values (i.e. a more
variable flow regime) in the West, with the highest values for ephemeral and/or small streams
in the South-East.

River flows vary seasonally with the highest totals generally occurring during the winter
months when rainfall totals are highest and evapotranspiration totals are lowest, and the
lowest totals during the summer months (April — September) resulting from lower
precipitation totals and higher evapotranspiration losses due to seasonal variations in energy
inputs. Snowmelt has little impact on river flows in GB except for some catchments in the
Scottish Highlands where snowmelt contributions can impact the flows. River flow patterns
are also heavily influenced by groundwater contributions from various regional aquifer
systems. In catchments overlying the Chalk outcrop in the South-East of the GB, flow is
groundwater-dominated with a predominantly seasonal hydrograph that responds less quickly
to rainfall events. Land use and human influences also significantly impact river flows, with
flows most heavily modified in the South-East and Midland regions of England due to high
population densities.

3.2 Digital Terran Analyses for GB

To implement DECIPHeR across GB, the UK NEXTMAP 50m gridded digital elevation
model was used as the basis of the Digital Terrain Analysis (Intermap, 2009). The first step
was to ensure that the DEM contained no sinks or flat areas before being run through the
DTA codes. Many freely available packages and codes exist to sink fill DEMs but for use
with large national data sets, a two-stage process is often necessary to ensure no flat areas in
the DEM and that important features, such as steep sided valleys, are not filled due to pinch
points in the DEM. For this study, we first applied an optimised pit removal routine ((Soille,
2004), code available on github https://github.com/crwr/OptimizedPitRemoval). This tool
uses a combination of cut and fill to remove all undesired pits while minimizing the net
change in landscape elevation. We then applied a sink fill routine to ensure no flat areas
remained in the DEM.

The inputs and outputs for the GB DTA is summarised in Figure 5. To build the river
network, we used the Ordnance Survey MasterMap Water Network Layer; a dense national
river vector dataset for GB. This was used to extract headwater cells and a river network
built by routing these cells downstream via the steepest slope so that the DEM and the
calculated stream network are consistent for flow accumulations based on surface slope.
Locations of 1,366 National River Flow Archive gauges were used to define the gauging
network and specify points on the river network where output was required. We used NRFA
catchment areas and masks as a reference guide to evaluate the best point for the gauge
locations from potential river cell candidates within a local search area. Slope, accumulated
area and the topographic index were then calculated for every grid cell and routing files
produced.

Finally, we chose three classifiers to demonstrate the modelling framework while ensuring
the number of HRUs was still computationally feasible for modelling across a large domain,
these being:

1. The catchment boundaries for each gauge were used to ensure minimal fluxes across
catchment boundaries.
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2. A 5km grid for the rainfall and PET inputs was used to represent the spatial variability
in climatic inputs across GB.

3. Three equal classes of slope and accumulated area were implemented resulting in
HRU?’s that cascade downslope to the valley bottom.

3.3 Rainfall Runoff Modelling
3.3.1 Input and Evaluation Datasets

Daily data of precipitation, potential evapotranspiration (PET) and discharge for a 55-year
period from 01/01/1961-31/12/2015 were used to run and assess the model. This period was
chosen as an appropriate test for the model covering a range of climatic conditions and to
demonstrate the model’s ability to simulate long time periods within uncertainty analyses
frameworks. The year 1961 was used as a warm-up period for the model; therefore no model
evaluation was quantified in this period.

A national gridded rainfall and potential evapo-transpiration (PET) product was used as input
into the model. Daily rainfall data were obtained from the CEH Gridded Estimates of Areal
Rainfall dataset (CEH-GEAR) (Keller et al., 2015; Tanguy et al., 2016). This dataset consists
of 1km? gridded estimates of daily rainfall from 1961 - 2015 for Great Britain and Northern
Ireland derived from the Met Office UK rain gauge network. The observed precipitations
from the rain gauge network are quality controlled and then natural neighbour interpolation is
used to generate the daily rainfall grids. Daily potential evapotranspiration (PET) data were
obtained from the CEH Climate hydrology and ecology research support system potential
evapotranspiration dataset for Great Britain (CHESS-PE) (Robinson et al., 2016). This
dataset consists of 1km? gridded estimates of daily PET for Great Britain from 1961 - 2015
calculated using the Penman-Monteith equation and data from the CHESS meteorology
dataset. Both datasets were aggregated to a 5km grid as forcing for the national model run.

The model was evaluated against daily streamflow data for the 1366 gauges obtained from
the National River Flow Archive (www.nrfa.ceh.ac.uk). This data is collected by measuring
authorities including the Environment Agency (EA), Natural Resources Wales (NRW) and
Scottish Environmental Protection Agency (SEPA) and then quality controlled before being
uploaded to the NRFA site.

3.3.2 Model Structure and Parameters

To initially evaluate the model, DECIPHeR was run within a monte-carlo simulation
framework whereby 10000 parameter sets were randomly sampled from a uniform prior
distribution. This number of parameter sets was chosen to provide a reasonable sampling of
the parameter space for demonstration purposes, however, for a full evaluation of the
parameter space, more parameter sets would be needed.

These parameters were applied uniformly across the HRUs and used within a single model
structure (as described in Section 2.3.5). Given the wide range of hydroclimatic conditions
across GB, sampling of the feasible parameter space was ensured by using wide sampling
ranges based on previous studies that have used Dynamic TOPMODEL (Beven and Freer,
2001; Freer et al., 2004; Page et al., 2007) (Table 2).

3.3.3 Model Evaluation

Daily time series of discharge for the 10,000 model simulations from each gauge were
evaluated against daily observed flow for all 1,366 gauges. This is a challenging test for the
model as these catchments cover a large range of hydrologic behaviour across GB and are

11



Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-205
Manuscript under review for journal Geosci. Model Dev.

Discussion started: 24 September 2018

(© Author(s) 2018. CC BY 4.0 License.

10

15

20

25

30

35

40

45

impacted by a variety of climatic, geological and anthropogenic processes as outlined in
Section 3.1. However, evaluating the model over such a large number of gauges acts as a
benchmark of model performance and a means of identifying future areas for model
development.

To benchmark model performance, we wanted to evaluate the model’s ability to capture a
range of hydrologic behaviour including maintaining overall water balance, capturing flow
variability, reproducing low and high flows and the timing of flows. Consequently, multiple
metrics, including hydrological signatures, standard hydrological model performance metrics
and statistics of the flow time series were used to provide insights into model performance.
Based on previous studies evaluating national scale models (McMillan et al., 2016) and
considering a diagnostic approach to model evaluation (Coxon et al., 2014; Gupta et al.,
2008; Yilmaz et al., 2008); four metrics were chosen which are summarised in Table 3
alongside their equations i) NSE (Nash and Sutcliffe, 1970), ii) Slope of the Flow Duration
Curve (Yadav et al., 2007) iii) Bias in Runoff Ratio (Yilmaz et al., 2008) and iv) Low Flow
Volume (Yilmaz et al., 2008).

These metrics are also used to determine a behavioural ensemble of parameter sets. The
focus of this model application is to demonstrate the model can be run in a Monte Carlo
framework. Consequently, while many different approaches could be used to determine a
behavioural ensemble of parameter sets (see for example (Beven, 2006; Coxon et al., 2014;
Krueger et al., 2010; Westerberg et al., 2011)), in this study we adopt a simple approach to
produce ensembles of flows. The four metrics described above are combined and the
behavioural ensemble was then taken as the top 1% of the model simulations according to
this combined score. To calculate the combined score, each metric was ranked in turn, these
ranks were summed, and all simulations sorted by the total combined rank. Weaker and
stricter performance thresholds in NSE and bias metrics were also defined to further explore
the performance of the ensembles against a common set of criteria (see Table 3). These were
chosen based on previous studies and although subjective, the hydrological modelling
community is yet to agree on benchmarks for the comparison of model performance (Seibert
etal., 2018).

3.4 Results
3.4.1 Digital Terrain Analysis and Model Simulation

DECIPHeR was set up for GB covering a total catchment area of 154,763km? for 1366
gauges and 365 principal basins. Principal basin area ranged from 7.87km? to 9935km? with
a median of 137km?. Using the HRU classifiers specified in Section 3.2, the number of
HRUs contained within each principal basin ranged from 17 to 8978 with a median of 123
HRUs. HRU area ranged from 0.0025km? to 14.33km? with a median HRU area of 0.65km?.

In total 13,600,600 55 year time series, flow simulations were produced. One simulation
over the 55 year time period for the largest river basin (9935km?) with 8978 HRUs takes
approximately 15 minutes to run on a standard CPU, outputting simulated discharge for all
the 98 gauges that lie within the Thames at Kingston river basin. For the smallest river basin
that has 17 HRUs and one river gauge, a single simulation over the 56 year time period on a
standard CPU takes less than a second.

3.4.2 Overall Model Performance

Our first assessment of model performance is the overall model performance for the four
performance metrics calculated from the 10000 simulated daily flow time series produced for
each gauge. Figure 6 shows the percentage of catchments that met the stricter and weaker
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performance thresholds defined in Table 3 from the entire ensemble of 10000 model
simulations and from the top 1% behavioural ensemble generated from the combined ranking
of the four metrics. Our results show that most catchments are able to meet both the
performance thresholds. The vast majority of gauges (90% for the whole ensemble) achieve
a NSE score greater than zero (i.e. better than mean climatology) and many of the gauges
(72% for the whole ensemble) achieve a score greater than 0.5. The model does well in
reproducing Low Flow Volumes and Slope of the Flow Duration Curve with most gauges (95
and 90% respectively) meeting the stricter performance threshold.

RRBIAS evaluates the model’s ability to reproduce water balance in the catchment; the
current implementation of the model has to maintain mass balance while many of the
observed flow data for many of these catchments does not maintain mass balance either due
to inter-catchment groundwater flows, anthropogenic influences such as surface and ground
water abstractions, or data errors (this is further discussed in section 4.4.4). Consequently,
RRBIAS is a more difficult metric for the model to capture and this is reflected by the fact
that 66% of the catchments meet the weaker threshold and just over 50% meet the stricter
threshold.

These numbers decrease slightly for the behavioural ensemble as expected due to trade-offs
between the four metrics but the overall trends remain the same.

3.4.3 Spatial Model Performance

To analyse model performance spatially across GB, the four evaluation metrics for the best
simulation (as defined by the combined rank across all four metrics) for each catchment is
summarised in Figure 7.

For NSE, model performance is variable across the country but generally, better model
performance is found in the wetter catchments in the North and West of GB, with poorer
model performance in drier catchments in the South and East. Model performance is poor in
groundwater dominated areas, particularly in the underlying chalk regions in the South East.
This region has particularly low runoff coefficients (see Figure 4d) and does not maintain
mass balance with large water losses. Consequently, results for RRBIAS shows that the
model tends to over-estimate flows in the South-East. While bias in the runoff ratio shows
the model is generally over-estimating flows, biases in the low flow volume is a more mixed
picture with the model under-estimating low flows in some locations, particularly in the
Midlands and North East Scotland. From Figure 4d, these areas are characterised by
particularly low flow duration curve slopes suggesting strongly damped flow responses with
high baseflow. Flow in the Midlands region is heavily regulated by reservoirs which sustain
low flows and could be a potential reason for over-estimating low flows in this area. The bias
in slope of the flow duration curve shows DECIPHeR does well at reproducing the flow
variability but tends to under-estimate the slope in Scotland suggesting that the hydrographs
in these catchments are too smooth and not sufficiently flashy.

3.4.4 Relationship Between Model Performance and Catchment Characteristics

To further analyse and understand the reasons for good/poor model performance,
relationships between key catchment characteristics and model performance were further
explored. Firstly, the catchments were grouped according to key catchment characteristics
based on discharge; runoff coefficient and base flow index. The 5%, 50" and 95" percentiles
of NSE and RRBIAS were calculated from the ensemble of runs for all catchments within
each group to explore relationships between model performance and catchment
characteristics (see Table 4). The relationship between runoff coefficient, wetness index and
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RRBIAS was also analysed to further explore the importance of water gains/losses on model
performance.

There is a clear link between model performance and catchments with a low runoff
coefficient. Table 4 highlights poor model performance in catchments where observed runoff
coefficients are less than 0.2. In this group, the model always over-predicts (as shown by the
RRBIAS result) and consequently leads to poor NSE scores. Figure 8 shows that for many
catchments where the model over-predicts flows (and particularly for catchments with a
runoff coefficient less than 0.2) observed potential evapotranspiration estimates are not high
enough to account for water losses culminating in an over-estimation of flows. This is
unsurprising given that currently the model maintains water balance and can’t lose or gain
water beyond the ‘natural’ conceptualisations of precipitation, discharge and evaporation
dynamics. Consequently, we are either missing a process (such as water loss due to inter-
catchment groundwater flows or anthropogenic impacts) or the data is wrong.

Poorer model performance is also found in high BFI catchments (Table 4), however, the
results also show we can also gain very good simulations in these types of catchments (5th
percentile has a NSE score of 0.82), hence the challenge is to better understand water
losses/gains in groundwater catchments as the first step to improve the representation of
groundwater dynamics in the model.

4 Outlook and Ongoing Developments

4.1 National Scale Model Evaluation

We calculated four evaluation metrics for 10,000 model simulations for 1,366 GB gauges to
provide an initial benchmark of model performance. DECIPHeR generally performs well for
the flow time series evaluated in this study, with better results in the West and North in wet
catchments as compared to drier catchments in the South and East. This is a common finding
for hydrological models, with many studies finding poor model performance and greatest
water balance errors in drier catchments (Gosling and Arnell, 2011; McMillan et al., 2016;
Newman et al., 2015; Pechlivanidis and Arheimer, 2015). Poor model performance is these
catchments is partially due to some of the metrics chosen in this study, for example percent
bias is most sensitive to small absolute biases in the driest catchments when compared to
other metrics such as absolute bias. However, positive bias in the runoff ratio could be caused
by a number of factors such as under-estimation of potential evapotranspiration (there are
other UK gridded PET products which estimate much higher potential evapotranspiration),
inter-catchment groundwater flows, and/or human influences such as water abstraction.
Population density is much higher in the South and East compared to the North and West so
this regional disparity in model performance could also be explained by a greater rate of
abstractions and managed watercourses which alter the flow time series. For example, 55%
of the effective rainfall in the Thames catchment is licensed for abstraction (Thames Water,
2017).

These results provide an initial test of DECIPHeR capabilities against a large sample of
catchments, but this is only a first-order evaluation of model performance. A more rigorous
evaluation would assess the model: over different seasons (Freer et al., 2004); under changing
climatic conditions (Fowler et al., 2016); for different hydrological extremes (Coron et al.,
2012); for multiple objectives simultaneously (Kollat et al., 2012); and, incorporate input and
flow data uncertainty (Coxon et al., 2014; Kavetski et al., 2006; McMillan et al., 2010;
Westerberg et al., 2016).
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4.2 Characterising Spatial Heterogeneity and Connectivity

The intended use of DECIPHEeR is to determine how much spatial variability and complexity
is required for a given set of modelling objectives. It can be run as a lumped model (1 HRU),
semi-distributed (multiple HRUSs) or fully gridded (HRU for every single grid cell). In this
paper DECIPHeR was applied across 1,366 GB gauges, with catchment masks, 5 km input
grids and three classes of accumulated area and slope as classifiers for the hydrological
response units, resulting in a total of 133,286 HRUs. Future work needs to consider the
appropriate spatial complexity and hydrologic connectivity needed to represent relevant
processes (Andréassian et al., 2004; Bloschl and Sivapalan, 1995; Boyle et al., 2001; Chaney
etal., 2016; Clark et al., 2015; Metcalfe et al., 2015; Wood et al., 1988). While this work
highlights the clear potential of a computationally-efficient large-scale modelling framework
that can run large ensembles, a balance is required to ensure computational efficiency when
running large ensembles that also maintains sufficient spatial complexity to represent
different hydrological processes.

4.3 Hypothesis Testing and Model Parameterisation

To demonstrate the modelling framework we implemented a single model structure, provided
in the open source model code, in all HRUs across GB and did not experiment with different
model structures in different parts of the landscape. This provides a good benchmark of
DECIPHeR’s ability at the national scale across GB, but the results suggest different model
structures are needed to represent a greater heterogeneity of hydrological responses beyond
the conceptual dynamics currently implemented in this simple model. Future work will
concentrate on adding modules to DECIPHeR to enhance performance with a focus on
improved representation of groundwater dynamic and human influences to address poor
model performance in catchments with a low runoff coefficient. We can gain new process
understanding of regional differences in catchment behaviour by testing different model
representations (Atkinson et al., 2002; Bai et al., 2009; Perrin et al., 2001).

It is challenging to parameterise a national scale hydrological model. Here we simply applied
the same parameter set across each catchment. Using this basin-by-basin approach has the
disadvantage of producing a “patchwork quilt” of parameter fields, with discontinuities in
parameter values across catchment boundaries. This is only effective for gauged catchments
(Archfield Stacey A. et al., 2015). Ongoing work aims to address these issues by
implementing the multiscale parameter regionalisation (MPR) technique for DECIPHeR
across GB. This technique links model parameters to geophysical catchment attributes
through transfer functions applied at the finest possible resolution (Samaniego et al., 2010).
The coefficients of the transfer functions are then calibrated, and parameters are upscaled to
produce spatially consistent fields of model parameters at any resolution across the entire
model domain. The MPR technique has been applied elsewhere, proving that it can produce
seamless parameter fields across large domains and produce scale-invariant parameters
(Kumar et al., 2013; Mizukami et al., 2017; Samaniego et al., 2017), which is ideal for a
flexible framework such as DECIPHeR.

5 Conclusions
DECIPHeR is a new flexible modelling framework which can be applied from small
catchment to continental scale for complex river basins resolving small-scale spatial

heterogeneity and connectivity. The model is underpinned by a flexible, computationally
efficient framework with a number of novel features:
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1. Spatial variability and connectivity - ability to modify spatial variability and
connectivity in the model via the specification of hydrological response units with
different topographic, landscape, input layers

2. Model structures and parameterisations - ability to experiment with different
5 model structures and parameterisations in different parts of the landscape
3. Computationally efficient - grouping of hydrologically similar points in the

landscape into hydrological response units enables faster run times

Automated Build — to allow easy application over large scales

Open source - the open source model code is implemented in Fortran, with a user
10 manual to help researchers and/or practitioners to use the model.

o &

This paper describes the modelling framework and its key components and demonstrates the
model’s ability to be applied a large model domain. DECIPHeR is shown to be
computationally efficient and perform well over large samples of gauges. This work
highlights the potential for catchment to continental scale predictions, by making use of

15 available big datasets, advances in flexible modelling frameworks and computing power.
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Table 1. Overview of DECIPHeR’s stores, fluxes and parameters

Stores

Srz Root Zone Storage m
Suz Unsaturated Storage m
Sex Saturation Excess Storage m

So Saturated Storage Deficit m
Internal Fluxes

Quz Drainage Flux mts?
Qi Upslope Input Flow m tst
Qexs Saturated Excess Flow m ts?
Qexus Precipitation Excess Flow m tst
Qor Overland Flow (sum of Qexs and Qexus) m ts?
Qsat Saturated Flow m ts*!
External Fluxes: Input

P Precipitation m ts?
E Potential Evapotranspiration mts?
Qobs Observed Discharge (for starting value of Qsat) m ts
External Fluxes: Output

Qsim Simulated Discharge mts?
Model Parameters

SZM Form of exponential decline in conductivity m
SRmax Maximum root zone storage m
SRinit Initial root zone storage m

Ta Unsaturated zone time delay m tst
CHV Channel routing velocity m tst
In(To) Lateral saturated transmissivity In(m?ts™)
Smax Maximum effective deficit of saturated zone m
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Table 2. Parameter Ranges

Parameter Units

Lower Bound

Upper Bound

SZM
SRmax
SRinit
Td
CHV
In(To)

Smax

m
m

m

m hrt

m hr?
In(m? hrt)
m

0.001
0.005
0

0.1
250
-7
0.2

0.07
0.15
0.01
40
4000
5

3
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Table 4. Summary statistics of DECIPHeR performance metrics for GB with catchments grouped by
runoff coefficient and base flow index. Percentiles are taken from the behavioural ensemble from all
catchments within each group. The column ‘N’ indicates the number of catchments in each group.
Cells are coloured according to the thresholds outlined in section 4.3.3, green for the stricter
threshold, yellow for the weaker threshold and red where it doesn’t meet either of the thresholds.

Runoff Coefficient Base Flow Index
N NSE (-) RRBias (%0) N NSE RRBias
95th  Med 5th 95th  Med 5th 95th  Med 5th 95th  Med  5th
0-0.2 85 67 57 014 | 73 213 996 20 0.08 044 075 | -32 4.6 136
0.2-04 | 362 | -1.7 022 066 | 84 | 376 123 320 | -0.1 056 0.80 | -7.9 3.2 97
0.4-06 | 348 | 0.11 053 0.77 | -06 122 432 629 | -0.2 055 0.82 | -5.0 8.9 97
0.6-08 | 352 | 0.25 065 084 | -3.7 13 19.3 257 -22 040 081 | -39 15 141
>0.8 219 | 011 0.70 0.83 | -24 -03 10.6 140 40 -01 0.82 | -28 41 633
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Digital Terrain Analysis
Catchment to Global Datasets

)

(elevation, slope, accumulated

Topographic Information
area, topographic index)

Gauge and River Network
(gauged or ungauged points)

[ Landscape Layers

(e.g. geology, soils, land use)

Spatially Varying Inputs
(e.g. gridded rainfall or PET)

HRU HRU HRU HRU
Setup A Setup B Setup C Setup D
O Gauged Point O Ungauged Point 7 HRUNumber === River Reach

Figure 1. Digital Terrain Analysis and simplified examples of using classification layers to discretise

a hypothetical catchment into Hydrological Response Units, from a) the gauge network, b) landscape

layer with a chalk outcrop for HRU 2, c) the gauge network, ungauged flow point and landscape layer
5  and d) same as c with individual river reach lengths specified
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Hydrological Response
Units b oo T |

rain

Figure 2. DECIPHeR represents spatial heterogeneity in the landscape through hydrological response
units (HRUs). Each HRU can have a different model structure, parameters or inputs.
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Figure 3. Simplified conceptual diagram of the model structure currently implemented in
DECIPHeR. All scientific notations are described in Table 1.
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Figure 4. Hydro-climatic characteristics of 1366 GB catchments (a) Annual Rainfall (mm/year), (b)
Annual PET (mm/year) (c) Runoff Coefficient (-), d) Slope of the Flow Duration Curve between the

5  30Mand 70™ percentiles (-). Min/max values on colorbars have been chosen to show clear differences
between catchments.
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Geoscientific
Model Development

Discussions

Hydrologically consistent digital
elevation model (50m)

Create river network from EA
headwaters routed downstreamto
coastal zones

Identify gauges on all rivers and cut
catchment masks

o
Calculate slope and accumulated
area to derive basic HRU definition
[

Spatially varying inputs — 5km input
grid for rainfall and PET

~~

Derive hydrological response units
for principal basins from
classification layers

Figure 5. Inputs and Outputs of Digital Terrain Analyses for GB a) 50m Hydrologically Consistent
Digital Elevation Model, b) DECIPHeR River Network, c) Nested Catchment Mask, d) Topographic

Index, €) 5km input grid
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Figure 6. Percentage of catchments for each metric that meet the weaker and stricter performance
thresholds for the entire ensemble of 10000 model simulations and from the top 1% behavioural
ensemble of 100 model simulations generated from the combined ranking of the four metrics.
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Figure 7. Model performance for the best simulation (as defined by the combined rank across all four
5  metrics) for each evaluation metric a) NSE (-), b) Bias in Runoff Ratio (%), c) Bias in Low Flow
Volume (%), and d) Bias in Slope of the Flow Duration Curve between the 30" and 70" percentile
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Figure 8. Scatter plot of wetness index (mean annual precipitation divided by mean annual potential
evapotranspiration), runoff coefficient (mean annual discharge divided by mean annual precipitation)

5 and bias in runoff ratio for each GB catchment evaluated in this study. Any points above the
horizontal dotted line are where runoff exceeds total rainfall inputs in a catchment and any points
below the curved line are where runoff deficits exceed total PET in a catchment.
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