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Abstract.  This paper presents DECIPHeR (Dynamic fluxEs and ConnectIvity for 

Predictions of HydRology); a new flexible model framework that simulates and predicts 15 

hydrologic flows from spatial scales of small headwater catchments to entire continents. 

DeCIPHER can be adapted to specific hydrologic settings and available data and modified to 

represent different levels of heterogeneity, connectivity and hydrological processes as 

needed. It has an automated build function that allows rapid set-up across required model 

domains and is open source to help researchers and/or practitioners use the model. 20 

DeCIPHER is applied across Great Britain to demonstrate the model framework and 

evaluated against daily flow time series from 1,366 gauges for four evaluation metrics to 

provide a benchmark of model performance.  Results show the model performs well across a 

range of catchment characteristics but particularly in wetter catchments in the West and 

North of Great Britain.  Future model developments will focus on adding modules to 25 

DECIPHeR to improve the representation of groundwater dynamics and human influences.    
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1 Introduction 

Water resources require careful management to ensure adequate potable and industrial 

supply, to support the economic and recreational value of water, and to minimise the impacts 

of hydrological extremes such as droughts and floods. Robust simulations and predictions of 

river flows are increasingly needed across multiple temporal and spatial scales to support 5 

such management strategies (Wagener et al., 2010) that may range from the assessment of 

local field-scale flood mitigation measures to emerging water challenges at regional to 

continental scales (Archfield Stacey A. et al., 2015). Such approaches are particularly 

important, indeed mandated, given national and international policies on water management, 

such as the European Union’s Water Framework Directive (EC, 2000) and Floods Directive 10 

(EC, 2007), where (inter)national information on water resources, low and high flows is 

needed to underpin robust environmental management and policy decisions. This requires the 

effective integration of field observations and numerical modelling tools to provide tailored 

outputs at gauged and ungauged locations across a wide range of scales relevant to policy 

makers and societal needs. Consequently there is a pressing need to develop new flexible 15 

modelling tools that can be applied to a range of space- and time- scales, and that are based 

on general hydrological principles applicable to a broad spectrum of different catchment 

types.   

The hydrologic community has made substantial investments to develop and apply 

hydrological models over the past 50 years to produce simulations and predictions of surface 20 

and groundwater flows, evaporation and soil moisture storage at multiple scales. The current 

generation of hydrological models can represent a range of physical processes and spatial 

complexity, for example: gridded approaches such as Grid-to-Grid (Bell et al., 2007), VIC 

(Hamman et al., 2018; Liang et al., 1994), SHETRAN (Lewis et al., 2018), Multiscale 

Hydrologic Model (Samaniego et al., 2010) and the DK-model (Henriksen et al., 2003); 25 

semi-distributed approaches that aggregate the landscape into hydrologic response units or 

sub-catchments, such as HYPE (Lindström et al., 2010), SWAT (Arnold et al., 1998) and 

Topnet (Clark et al., 2008b); and conceptual models applied at the catchment scale (Beven 

and Kirkby, 1979; Burnash, 1995; Coron et al., 2017; Leavesley et al., 1996; Lindström et al., 

1997; Zhao, 1984). Whilst all these models have provided useful insights and relevant 30 

outputs, the underlying model structures do not have the flexibility to represent different 

levels of complexity in different landscapes. For example, they either tend to: have a fixed 

representation of spatial variability (i.e. a single spatial resolution or a single spatial structure 

such as raster based); have a lack of spatial connectivity between hillslope and riverine 

components; be computationally expensive; and/or employ a single model structure applied 35 

homogenously across the model domain or nested catchment scale. 

Hydrological models need to represent the complex drivers of catchment behaviour, such as 

space- and time- varying climate, land cover, human influence etc., to capture the resulting 

heterogeneous hydrological responses and changing landscape connectivity (Blöschl and 

Sivapalan, 1995). There is little consensus to define the appropriate spatial complexity and 40 

hydrologic connectivity needed to represent relevant processes nor which processes are 

required to achieve different modelling objectives. This is despite significant development of 

various modelling tools: hyper-resolution models to represent spatial heterogeneity at finer 

scales (Bierkens et al., 2015; Wood et al., 2011) and multi-model frameworks, to test 

competing hypotheses of catchment behaviour, such as FUSE (Clark et al., 2008a) and 45 

SUPERFLEX (Fenicia et al., 2011; Kavetski and Fenicia, 2011). 
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The key constraints to model development have been the lack of appropriate datasets and 

available computing power to run ensembles of complex simulations within reasonable 

timeframes. However, national and global open-source datasets are becoming readily 

available and significant gains in computing power have mitigated these constraints, to 5 

present the hydrological community with greater ability to build more flexible hydrological 

models that can resolve small-scale features in the landscape and be applied across 

continental scales to produce ensembles of flow simulations and predictions for a wide range 

of scales and water challenges.  The need for such approaches is well documented in the 

literature (Clark et al., 2011, 2015; Mendoza et al., 2015) with calls for flexible hydrological 10 

modelling systems to: (1) incorporate different model structures and parameterisations in 

different parts of the landscape to represent a variety of processes; (2) change their spatial 

complexity, variability and/or hydrologic connectivity for hillslope elements and river 

network reaches (Beven and Freer, 2001; Mendoza et al., 2015); and, (3) be applied across a 

wide range of spatial and temporal scales. However, few such models exist. 15 

We have therefore created a new flexible model framework, DECIPHeR (Dynamic fluxEs 

and ConnectIvity for Predictions of HydRology), to be used to simulate and predict 

hydrologic flows and connectivity from spatial scales of small headwater catchments to entire 

continents. The model can be adapted to specific hydrologic settings and available data and 

can be modified to represent different levels of heterogeneity, connectivity and hydrological 20 

processes as needed. DECIPHeR has an automated build function that allows rapid set-up 

across required model domains with limited user input. The underlying code has been 

optimised to run large ensembles and enable model uncertainty to be fully explored. This is 

particularly important given inherent uncertainties in hydro-climatic datasets (Coxon et al., 

2015; McMillan et al., 2012) and their impact on model calibration, regionalisation and 25 

evaluation (Freer et al., 2004; Kavetski et al., 2006; Kuczera et al., 2010; McMillan et al., 

2010, 2011; Westerberg et al., 2016). We have specifically made the model code readable, 

reusable and open source to allow the broader community to learn from, verify and advance 

the work described here (Buytaert et al., 2008; Hutton et al., 2016). 

In this paper, we: (1) describe the key capabilities and concepts that underpin DECIPHeR; (2) 30 

provide a detailed discussion of the model code and components; (3) demonstrate its 

application at the national scale to 1,366 catchments in Great Britain (GB); and, (4) discuss 

potential future model developments. 

2 The DECIPHeR Modelling Framework 

2.1 Key Concepts 35 

The modelling framework builds on the code and key concepts of Dynamic TOPMODEL.  

Dynamic TOPMODEL was originally introduced by (Beven and Freer, 2001) and has since 

been applied in a wide range of studies (Freer et al., 2004; Liu et al., 2009, p.200; Metcalfe et 

al., 2017; Page et al., 2007; Younger et al., 2008) and integrated into other modelling 

frameworks (e.g. HydroBlocks, (Chaney et al., 2016).  While the key concepts that underpin 40 

Dynamic TOPMODEL address many of the challenges outlined in the introduction, for the 

most part it has only ever been applied to a single catchment or very simple nested gauge 

networks in headwater catchments (Peters et al., 2003).  Consequently, we have made several 

key advances in flexibility and in automation so the model can be applied from single small 

headwater catchments to regional, national and continental scales.  45 

The DECIPHeR modelling framework: 
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1. Can be easily applied to a single or multiple catchment(s), across large scales and 

complex river networks because it has an automated model building facility.  

2. Can produce flow simulations for any gauged or ungauged point on a river network, 

and segment river reaches into any length for individual hillslope-river flux 

contributions. 5 

3. Can (a) experiment with different landscape and climate attributes to characterise 

different spatial model structures and parameterisations and (b) modify the spatial 

scale/complexity of how spatial variability and hydrologic flow path connectivity are 

represented via its flexible modelling framework 

4. Can easily allow different model hypotheses of catchment behaviour to be added 10 

because it is modular and extensible. 

5. Can run large model ensembles to characterise model uncertainty because it is 

computationally efficient 

6. Can be easily adopted and adapted because it is open source and includes a detailed 

user manual 15 

 

DECIPHeR provides the capability to tackle fundamental hydrological modelling challenges 

and address general as well as site specific problems.  To realise this, DECIPHeR uses 

hydrological response units (HRUs) to group together raster-based information into non-

contiguous spatial elements in the landscape that share similar characteristics (see Figure 1).  20 

Importantly, these are not just fractions of the landscape with no explicit geographical 

location.  Each HRU maintains hydrological connectivity in the landscape via weightings that 

determine the proportions of lateral subsurface flux from each HRU to all other connected 

HRUs, within itself and flows to river cells.  The user can split up the catchment in any 

configuration to change the representation of spatial complexity and hydrologic connectivity 25 

using, for example, different landscape attributes (e.g. geology, land use) and/or spatially 

varying inputs (e.g. rainfall, evaporation, etc.) to define similarity.  Each HRU is treated as a 

separate store in the model which can have different process conceptualisations and 

parameterisations so that more process complexity can be incorporated where needed to 

better suit local conditions (e.g. to account for ‘point-source’ human influences or more 30 

complex hydrological processes such as surface-groundwater exchanges).  HRUs minimise 

run times of the model compared to grid or fully distributed based formulations and still 

allows model simulations to be mapped back into space.   

HRUs are defined prior to rainfall-runoff modelling and DECIPHeR consists of two key steps 

where (1) digital terrain analyses are performed to define the gauge network, set up the river 35 

network and routing, discretise the catchment into HRUs and characterise the spatial 

variability and hydrologic connectivity in the landscape, and (2) HRUs are run in the rainfall 

runoff model to provide flow timeseries.  These two steps are described in the following 

sections.  More detailed descriptions of the input and output files, code workflows and codes 

can be found in the user manual.   40 

2.2 Digital Terrain Analysis (DTA) 

2.2.1 General Overview 

The DTA in DECIPHeR constructs the spatial topology of the model components to define 

hillslope and riverine elements. The DTA defines the spatial extent of every HRU based upon 

multiple attributes, quantifies the connectivity between these HRU’s in the landscape, 45 

determines the river network and all downstream routing properties, and determines the 

extent and where simulated output variables (i.e. discharge) should be produced (including 

gauged or ungauged locations) (see Figure 1). 
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While the DTA builds on the original Dynamic TOPMODEL code, several key advances 

have been made in the new version including: 

1. The process can be fully automated enabling multiple catchments and/or the 

processing of national scale data to be easily and quickly processed to build models in 

complex multi-catchment regions 5 

2. Code has been updated to a FORTRAN 2003 compliant version with new array and 

memory handling to allowing large, complex gauging networks to be processed in 

ways which is computationally efficient 

3. Greater flexibility in the complexity and spatial properties of river network and 

routing properties- separate flow pathway contributions of hillslope to river reach 10 

elements can be defined for any reach length  

2.2.2 Data Prerequisites 

The minimum data requirement to run the DTA is a digital elevation model (DEM) and XY 

locations where flow time series is needed on the river network.  The digital elevation model 

must contain no sinks or flat areas to ensure that the river network and catchments can be 15 

properly delineated.    

 

Additional data can also be incorporated depending on data availability and modelling 

objectives.  A river network can be supplied if the user wishes to specify headwater cells 

from a predefined river network and reference catchment areas and masks can be used to 20 

identify the best station location on the river network.  Depending on user requirements, 

topographic, land use, geology, soils, anthropogenic and climate attributes can be supplied to 

define the spatial topology and thus differences in model inputs, structure and 

parameterisation.   

2.2.3 River Network, Catchment Identification and River Routing 25 

DECIPHeR generates streamflow estimates at any point on the river network specified by the 

user.  A river network is generated in DECIPHeR which matches the DEM flow direction and 

always connects to the boundary of the DEM or the sea.  The river network is created from a 

list of headwater cells, which the functions can use/produce in three different ways depending 

on user requirements and/or data availability: 30 

1. A list of pre-defined headwater (i.e. starting) river locations read into the DTA 

algorithms from a file 

2. Headwater cells are found from a pre-defined river network 

3. Where no pre-defined river network or headwater locations are available, then 

headwater cells are found from a river network which is derived from cells that meet 35 

thresholds of accumulated area and/or topographic index 

Each headwater location is then routed downstream in a single flow direction via the steepest 

slope until reaching a sea outlet, other river or edge of the DEM, to construct a contiguous 

river network for the whole area of interest.  Gauge locations are then generated on the river 

network from the point locations specified by the user.  If a reference catchment mask or area 40 

is available, catchment masks are produced for candidate river cells found in a given radius 

and the catchment mask with the best fit to the reference mask or area is chosen as the gauge 

location.  Otherwise the closest river cell is chosen as the gauge location.   

Catchment masks are created from the final gauge list, with both individual masks for all the 

points specified on the river network and a combined catchment mask with the nested 45 

catchment masks created for use in the creation of the hydrological response units.  From the 
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river network and gauge locations, the river network connectivity is derived with each river 

section labelled with a unique river ID and a suite of routing tables so that each ID knows it’s 

downstream connections and to allow multiple routing schemes to be configured.  These 

codes also provide the option of setting a river reach length where output time series can also 

be specified at different reach lengths between gauges (see Figure 1, HRU Setup D).  5 

2.2.4 Topographic Analysis 

Topography, slope, accumulated area and topographic index are important properties of the 

landscape to aid the definition of hydrologic similarity and more dominant flow pathways.    

In DECIPHeR, they provide the basis for river routing and river network configuration and 

they also can be used to help determine the initial separation of landscape elements for 10 

defining hydrological similarity using percentiles of accumulated area, elevation and slope (in 

addition to alternative catchment attributes such as urban extent, geology, landuse, soils etc.).  

 

Topographic index is calculated using the M8 multiple flow directional algorithm of (Quinn 

et al., 1995).  The DTA calculates slope, accumulated area and topographic index for the 15 

whole domain.  It uses the river mask to define the cells where accumulated area cannot 

accumulate downstream and the catchment mask to ensure accumulated area does not 

accumulate across nested catchment boundaries.     

2.2.5 Hydrological Response Units 

The most critical aspect of running DECIPHeR is to define HRU’s according to user 20 

requirements.  The HRU configuration determines the spatial connectivity and complexity of 

model conceptualisation as well as the spatial variability of inputs and conceptual structure 

and parameters to be implemented in each part of the landscape.  Any number of different 

spatial discretisations can be derived and subsequently applied in the DECIPHeR framework 

allowing the user to experiment with different model structures and parameterisations and 25 

modify representations of spatial variability and hydrologic connectivity.  

 

In the DTA, hydrologically similar points in the landscape are grouped together so that each 

HRU is a unique combination of four different classification layers.  These specify: (1) the 

initial separation of landscape elements from topographic information (e.g. slope, 30 

accumulated area and/or elevation); (2) inputs; (3) process conceptualisations; and (4) 

parameters implemented for each HRU store in the model (see Figure 2).  These 

classification layers can be derived from climatic inputs, such as spatially varying rainfall and 

potential evapotranspiration, and landscape attributes such as geology, land use, 

anthropogenic impacts, soils data, slope, accumulated area.  The simplest setup will consist of 35 

one HRU per catchment while the most complex can consist of a HRU for every grid cell (i.e. 

fully distributed).    

 

To maintain hydrological connectivity in the landscape, the proportions of flow between the 

cells comprising each HRU are calculated based on accumulated area and slope.  The flow 40 

fractions are then aggregated into a flow distribution matrix that summarises the proportions 

(weightings) of lateral subsurface flow from each HRU either to (1) itself, (2) another HRU 

or (3) a river reach.  For n hydrological response units, the weights (W) are defined as:   

 

𝑊 =  (

𝑤1,1 ⋯ 𝑤1,𝑛

⋮ ⋱ ⋮
𝑤𝑛,1 ⋯ 𝑤𝑛,𝑛

) 45 

Equation 1 
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Where each row defines how the HRU’s output is distributed to other HRU’s, any river 

reaches or itself and each column represents the total input to each HRU at every time step as 

the weighted sum of all the upstream outputs. Each row and column sum to one to ensure 

mass balance.  The weights are detailed in a HRU flux file (which is fixed for a simulation) 

as a flow distribution matrix along with tabulated HRU attributes to provide information on 5 

which inputs, parameter and model structure type each HRU is using.   

2.3 Rainfall-Runoff Modelling 

2.3.1 General Overview 

Once the DTA is complete, the rainfall-runoff modelling can then be executed.  While 

DECIPHeR builds on the original Dynamic TOPMODEL code, several key advances were 10 

made in the new version including: 

1. Code has been updated to a FORTRAN 2003 compliant version with new array and 

memory handling to allow large datasets at any spatial scale and any complexity of 

gauging network to be processed to be commensurate with the DTA processing. 

2. New river routing algorithms added to allow streamflow estimates to be computed at 15 

any point on the river network and in any spatial configuration 

3. New initialisation code added to ensure that multiple points on the river network can 

be initialised via local storages and fluxes in each HRU successfully 

4. New code to seamlessly facilitate DTA classification layers and results into rainfall 

runoff model configuration that allows each individual HRU to have a different model 20 

structure, parameters, and climatic inputs. 

2.3.2 Data Pre-requisites 

To run the rainfall-runoff modelling component of DECIPHeR, time series forcing data of 

rainfall and potential evapotranspiration are required.  Discharge data can also be provided 

for gauged locations and are used to initialise the model. 25 

 

Besides forcing data, the model also needs, (1) the HRU flux file and routing files produced 

by the DTA, (2) a parameter file specifying set parameter bounds for Monte-Carlo sampling 

of parameters and (3) project/settings files specifying the number of parameter sets to run, 

which HRU and input file to use etc. 30 

2.3.3 Initialisation 

Initialisation is an important step for any rainfall-runoff model.  To ensure that subsurface 

flows, storages and the river discharge have all stabilised can be particularly problematic 

when modelling regionally over a large area as not all HRU’s will initialise at the same rate 

(depending on size and slope characteristics). 35 

A simple homogenous initialisation is currently implemented in DECIPHeR where the 

storage deficits for all HRU’s are determined from an initial discharge.  This is calculated as 

a mean area weighted discharge of the starting flows at timestep 1 for all output points on the 

river network.  If a gauge does not have an initial flow, then the initial flow is either 

calculated from the mean of the data or set to a value of 1mm/day if no flow data is available.  40 

The initial discharge is assumed to be solely due to the subsurface drainage into the river so is 

used as the starting value for QSAT and to determine the associated storage and unsaturated 

zone fluxes.  The model is then run for an initialisation period to allow its internal states to 

fully stabilise with the catchment climatic information. Initialisation periods depend in part to 

the parameterisation of the model simulation run as well as the size and characteristics of the 45 

catchment being considered. 
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2.3.4 Parameters 

DECIPHeR can be run either using default parameter values or through Monte-Carlo 

sampling of parameters between set parameter bounds to produce ensembles of river flows.  

In the DTA, the user can set different parameter bounds for each HRU or sub-catchment thus 

specifying areas of the landscape where different parameter bounds are needed.  5 

Alternatively, a single set of parameter bounds can be applied across the model domain. 

For the model structure provided in the standard build and described below, there are seven 

parameters that can be sampled or set to default parameters.  These parameters describe the 

transmissivity of the subsurface, the water holding capacity and permeability of soils and the 

channel routing velocity (see Table 1). More parameters can easily be added by the user if 10 

required for different model structures by changing the model source code. 

2.3.5 Model Structure  

The description below details the model structure that is provided in the open source code 

(see Figure 3 and Table 1).  While the code is built to be modular and extensible so that a 

user can easily implement multiple different model structures if so wished, the aim of this 15 

paper and the initial focus of the code development was on applying the model across large 

scales and not implementing multiple model structures.  Thus, we provide a single model 

structure in the open source code that serves as a model benchmark to be built upon in future 

iterations.   

The model structure consists of three stores defining the soil profile (Figure 4), which are 20 

implemented as lumped stores for each HRU.  The first store is the root zone storage (SRZ).  

Precipitation (P) is added to this store and then evapotranspiration (ET) is calculated and 

removed directly from the root zone.  The maximum specific storage of SRZ is determined by 

the parameter SRmax.  Actual evapotranspiration from each HRU depends on the potential 

evapotranspiration (PET) rate supplied by the user and the root zone storage using a simple 25 

common formulation where evapotranspiration is removed at the full potential rate from 

saturated areas (i.e. if the root zone storage is full) and at a rate proportional to the root zone 

storage in unsaturated areas: 

𝐸𝑇 = 𝑃𝐸𝑇 ∗ (𝑆𝑅𝑍 𝑆𝑅𝑚𝑎𝑥)⁄  

Equation 2 30 

Once the root zone reaches maximum capacity (i.e. deficit of zero and conceptually 

analogous to field capacity), any excess rainfall input that is remaining is either added to the 

unsaturated zone (Suz) where it is routed to the subsurface store or if this store is also full, 

QEXUS is added to the saturation excess storage (SEX) and routed directly overland as saturated 

excess overland flow (QOF).  The unsaturated zone links the SRZ and saturated zones 35 

according to a linear function that includes a gravity drainage time delay parameter (Td) for 

vertical routing through the unsaturated zone.  The drainage flux (Quz) from the unsaturated 

zone to the saturated zone is at a rate proportional to the ratio of unsaturated zone storage 

(Suz) to storage deficit (SD): 

        𝑄𝑈𝑍 =  𝑆𝑈𝑍 (𝑆𝐷 ∗ 𝑇𝑑)⁄   40 

Equation 3 

The dryness of the saturated zone is represented by the storage deficit.  Changes to storage 

deficits for each HRU are dependent on recharge from SUZ (QUZ), fluxes from upslope HRUs 
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(QIN) and downslope flow out of each HRU (QSAT) with subsurface flows for each HRU 

distributed according to the DTA flow distribution matrix described in section 4.2.5.   

𝑑𝑆𝐷

𝑑𝑡
= 𝑄𝑆𝐴𝑇 − 𝑄𝐼𝑁 − 𝑄𝑈𝑍 

Equation 4 

Transfers between HRUs (and subsequently to the stream channel) are calculated using a 5 

kinematic wave formulation (Beven and Freer, 2001; Li et al., 1975; Metcalfe et al., 2015) for 

downslope flow out of each HRU (QSAT) with both upslope (inputs) and local (for outputs) 

storages required.  

The parameter, SZM, sets the form of the exponential decline in saturated zone hydraulic 

transmissivity with depth thereby controlling the shape of the recession curve in time. The 10 

parameter ln(T0) determines the lateral saturated hydraulic transmissivity at the point when 

the soil is saturated.  The parameter, Smax, sets the saturated zone deficit threshold at which 

downslope flows between HRUs no longer occurs.  If Smax has been reached then no 

downslope flow occurs and if the storage deficit is less than zero (the soil is at or above it’s 

saturation capacity), then excess storage (QEXS) is added to saturation excess overland flow 15 

(QOF). 

Channel flow routing in DECIPHeR is modelled using a set of time delay histograms that are 

derived from the digital terrain analyses for the points where output is required.  A fixed 

channel wave velocity (CHV) is applied throughout the network to account for delay and 

attenuation in the simulated flows (QSIM).  DECIPHeR is a mass conserving model and 20 

therefore the model water balance always closes (subject to small rounding errors).   

2.4 Model Implementation 

The DECIPHeR model code is available on github (https://github.com/uob-

hydrology/DECIPHeR) and is accompanied by a user manual which provides a detailed 

description of the file formats, how to run the codes and a code workflow.  All the model 25 

code is written in FORTRAN for its speed, efficiency and ability to process large scale spatial 

datasets.  Two additional bash scripts are provided as an example of calling the digital terrain 

analysis codes.   

3 Great Britain National Model Implementation and Evaluation 

While the modelling framework has a wide range of functionality, in this paper we wanted to 30 

demonstrate the ability of the model to be applied across a large domain to generate 

ensembles of flows at thousands of gauging stations and evaluate its current capability across 

large scales to guide future model developments.  Consequently, we applied DECIPHeR to 

1,366 gauges in Great Britain (GB) and in this section we describe the model setup, input 

data, evaluation criteria and model results.   35 

3.1 Great Britain Hydrology 

Catchments in Great Britain (GB) cover a wide hydrologic and climatic diversity.  Figure 4 

shows the mean annual rainfall, mean annual potential evapotranspiration, runoff coefficient,  

and slope of the flow duration curve between the 30 and 70 flow percentiles for the 1,366 

catchments in this study.   Rainfall is highest in the West and North of GB and lowest in the 40 

East and South ranging from 540 to 3400 mm/year (Figure 4a), while evapotranspiration 

losses are highest in the East and South and lowest in the West and North ranging from 370 
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to 545 mm/year (Figure 4b).  This regional divide of rainfall and PET is reflected in the 

runoff coefficients (Figure 4c) where generally runoff coefficients are lowest in the East and 

South and highest in the North and West.  Slope of the flow duration curve (Figure 4d) is a 

more mixed picture across GB with lower values (i.e. a less variable flow regime) found in 

North-East Scotland, Midlands and patches of the South-East and higher values (i.e. a more 5 

variable flow regime) in the West, with the highest values for ephemeral and/or small streams 

in the South-East.   

River flows vary seasonally with the highest totals generally occurring during the winter 

months when rainfall totals are highest and evapotranspiration totals are lowest, and the 

lowest totals during the summer months (April – September) resulting from lower 10 

precipitation totals and higher evapotranspiration losses due to seasonal variations in energy 

inputs.  Snowmelt has little impact on river flows in GB except for some catchments in the 

Scottish Highlands where snowmelt contributions can impact the flows.  River flow patterns 

are also heavily influenced by groundwater contributions from various regional aquifer 

systems.  In catchments overlying the Chalk outcrop in the South-East of the GB, flow is 15 

groundwater-dominated with a predominantly seasonal hydrograph that responds less quickly 

to rainfall events. Land use and human influences also significantly impact river flows, with 

flows most heavily modified in the South-East and Midland regions of England due to high 

population densities.  

3.2 Digital Terran Analyses for GB 20 

To implement DECIPHeR across GB, the UK NEXTMAP 50m gridded digital elevation 

model was used as the basis of the Digital Terrain Analysis (Intermap, 2009).  The first step 

was to ensure that the DEM contained no sinks or flat areas before being run through the 

DTA codes.  Many freely available packages and codes exist to sink fill DEMs but for use 

with large national data sets, a two-stage process is often necessary to ensure no flat areas in 25 

the DEM and that important features, such as steep sided valleys, are not filled due to pinch 

points in the DEM.  For this study, we first applied an optimised pit removal routine ((Soille, 

2004), code available on github  https://github.com/crwr/OptimizedPitRemoval).  This tool 

uses a combination of cut and fill to remove all undesired pits while minimizing the net 

change in landscape elevation.  We then applied a sink fill routine to ensure no flat areas 30 

remained in the DEM.   

The inputs and outputs for the GB DTA is summarised in Figure 5.  To build the river 

network, we used the Ordnance Survey MasterMap Water Network Layer; a dense national 

river vector dataset for GB.  This was used to extract headwater cells and a river network 

built by routing these cells downstream via the steepest slope so that the DEM and the 35 

calculated stream network are consistent for flow accumulations based on surface slope.  

Locations of 1,366 National River Flow Archive gauges were used to define the gauging 

network and specify points on the river network where output was required.  We used NRFA 

catchment areas and masks as a reference guide to evaluate the best point for the gauge 

locations from potential river cell candidates within a local search area. Slope, accumulated 40 

area and the topographic index were then calculated for every grid cell and routing files 

produced. 

Finally, we chose three classifiers to demonstrate the modelling framework while ensuring 

the number of HRUs was still computationally feasible for modelling across a large domain, 

these being: 45 

1. The catchment boundaries for each gauge were used to ensure minimal fluxes across 

catchment boundaries.    

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-205
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 24 September 2018
c© Author(s) 2018. CC BY 4.0 License.



11 

 

2. A 5km grid for the rainfall and PET inputs was used to represent the spatial variability 

in climatic inputs across GB.   

3. Three equal classes of slope and accumulated area were implemented resulting in 

HRU’s that cascade downslope to the valley bottom.   

 5 

3.3 Rainfall Runoff Modelling 

3.3.1 Input and Evaluation Datasets 

Daily data of precipitation, potential evapotranspiration (PET) and discharge for a 55-year 

period from 01/01/1961–31/12/2015 were used to run and assess the model.  This period was 

chosen as an appropriate test for the model covering a range of climatic conditions and to 10 

demonstrate the model’s ability to simulate long time periods within uncertainty analyses 

frameworks. The year 1961 was used as a warm-up period for the model; therefore no model 

evaluation was quantified in this period.  

A national gridded rainfall and potential evapo-transpiration (PET) product was used as input 

into the model.  Daily rainfall data were obtained from the CEH Gridded Estimates of Areal 15 

Rainfall dataset (CEH-GEAR) (Keller et al., 2015; Tanguy et al., 2016).  This dataset consists 

of 1km2 gridded estimates of daily rainfall from 1961 - 2015 for Great Britain and Northern 

Ireland derived from the Met Office UK rain gauge network.  The observed precipitations 

from the rain gauge network are quality controlled and then natural neighbour interpolation is 

used to generate the daily rainfall grids.  Daily potential evapotranspiration (PET) data were 20 

obtained from the CEH Climate hydrology and ecology research support system potential 

evapotranspiration dataset for Great Britain (CHESS-PE) (Robinson et al., 2016).  This 

dataset consists of 1km2 gridded estimates of daily PET for Great Britain from 1961 - 2015 

calculated using the Penman-Monteith equation and data from the CHESS meteorology 

dataset.  Both datasets were aggregated to a 5km grid as forcing for the national model run. 25 

The model was evaluated against daily streamflow data for the 1366 gauges obtained from 

the National River Flow Archive (www.nrfa.ceh.ac.uk).  This data is collected by measuring 

authorities including the Environment Agency (EA), Natural Resources Wales (NRW) and 

Scottish Environmental Protection Agency (SEPA) and then quality controlled before being 

uploaded to the NRFA site.   30 

3.3.2 Model Structure and Parameters 

To initially evaluate the model, DECIPHeR was run within a monte-carlo simulation 

framework whereby 10000 parameter sets were randomly sampled from a uniform prior 

distribution.  This number of parameter sets was chosen to provide a reasonable sampling of 

the parameter space for demonstration purposes, however, for a full evaluation of the 35 

parameter space, more parameter sets would be needed.   

These parameters were applied uniformly across the HRUs and used within a single model 

structure (as described in Section 2.3.5).  Given the wide range of hydroclimatic conditions 

across GB, sampling of the feasible parameter space was ensured by using wide sampling 

ranges based on previous studies that have used Dynamic TOPMODEL (Beven and Freer, 40 

2001; Freer et al., 2004; Page et al., 2007) (Table 2). 

3.3.3 Model Evaluation 

Daily time series of discharge for the 10,000 model simulations from each gauge were 

evaluated against daily observed flow for all 1,366 gauges.  This is a challenging test for the 

model as these catchments cover a large range of hydrologic behaviour across GB and are 45 
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impacted by a variety of climatic, geological and anthropogenic processes as outlined in 

Section 3.1.  However, evaluating the model over such a large number of gauges acts as a 

benchmark of model performance and a means of identifying future areas for model 

development. 

To benchmark model performance, we wanted to evaluate the model’s ability to capture a 5 

range of hydrologic behaviour including maintaining overall water balance, capturing flow 

variability, reproducing low and high flows and the timing of flows.  Consequently, multiple 

metrics, including hydrological signatures, standard hydrological model performance metrics 

and statistics of the flow time series were used to provide insights into model performance.  

Based on previous studies evaluating national scale models (McMillan et al., 2016) and 10 

considering a diagnostic approach to model evaluation (Coxon et al., 2014; Gupta et al., 

2008; Yilmaz et al., 2008); four metrics were chosen which are summarised in Table 3 

alongside their equations i) NSE (Nash and Sutcliffe, 1970), ii) Slope of the Flow Duration 

Curve (Yadav et al., 2007) iii) Bias in Runoff Ratio (Yilmaz et al., 2008) and iv) Low Flow 

Volume (Yilmaz et al., 2008).   15 

These metrics are also used to determine a behavioural ensemble of parameter sets.  The 

focus of this model application is to demonstrate the model can be run in a Monte Carlo 

framework.  Consequently, while many different approaches could be used to determine a 

behavioural ensemble of parameter sets (see for example (Beven, 2006; Coxon et al., 2014; 

Krueger et al., 2010; Westerberg et al., 2011)), in this study we adopt a simple approach to 20 

produce ensembles of flows.  The four metrics described above are combined and the 

behavioural ensemble was then taken as the top 1% of the model simulations according to 

this combined score.  To calculate the combined score, each metric was ranked in turn, these 

ranks were summed, and all simulations sorted by the total combined rank.  Weaker and 

stricter performance thresholds in NSE and bias metrics were also defined to further explore 25 

the performance of the ensembles against a common set of criteria (see Table 3).  These were 

chosen based on previous studies and although subjective, the hydrological modelling 

community is yet to agree on benchmarks for the comparison of model performance (Seibert 

et al., 2018). 

3.4 Results 30 

3.4.1 Digital Terrain Analysis and Model Simulation 

DECIPHeR was set up for GB covering a total catchment area of 154,763km2 for 1366 

gauges and 365 principal basins.  Principal basin area ranged from 7.87km2 to 9935km2 with 

a median of 137km2.  Using the HRU classifiers specified in Section 3.2, the number of 

HRUs contained within each principal basin ranged from 17 to 8978 with a median of 123 35 

HRUs.  HRU area ranged from 0.0025km2 to 14.33km2 with a median HRU area of 0.65km2.   

In total 13,600,600 55 year time series, flow simulations were produced.  One simulation 

over the 55 year time period for the largest river basin (9935km2) with 8978 HRUs takes 

approximately 15 minutes to run on a standard CPU, outputting simulated discharge for all 

the 98 gauges that lie within the Thames at Kingston river basin.  For the smallest river basin 40 

that has 17 HRUs and one river gauge, a single simulation over the 56 year time period on a 

standard CPU takes less than a second. 

3.4.2 Overall Model Performance  

Our first assessment of model performance is the overall model performance for the four 

performance metrics calculated from the 10000 simulated daily flow time series produced for 45 

each gauge.  Figure 6 shows the percentage of catchments that met the stricter and weaker 
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performance thresholds defined in Table 3 from the entire ensemble of 10000 model 

simulations and from the top 1% behavioural ensemble generated from the combined ranking 

of the four metrics.  Our results show that most catchments are able to meet both the 

performance thresholds.  The vast majority of gauges (90% for the whole ensemble) achieve 

a NSE score greater than zero (i.e. better than mean climatology) and many of the gauges 5 

(72% for the whole ensemble) achieve a score greater than 0.5.  The model does well in 

reproducing Low Flow Volumes and Slope of the Flow Duration Curve with most gauges (95 

and 90% respectively) meeting the stricter performance threshold.   

RRBIAS evaluates the model’s ability to reproduce water balance in the catchment; the 

current implementation of the model has to maintain mass balance while many of the 10 

observed flow data for many of these catchments does not maintain mass balance either due 

to inter-catchment groundwater flows, anthropogenic influences such as surface and ground 

water abstractions, or data errors (this is further discussed in section 4.4.4).  Consequently, 

RRBIAS is a more difficult metric for the model to capture and this is reflected by the fact 

that 66% of the catchments meet the weaker threshold and just over 50% meet the stricter 15 

threshold.   

These numbers decrease slightly for the behavioural ensemble as expected due to trade-offs 

between the four metrics but the overall trends remain the same.   

3.4.3 Spatial Model Performance 

To analyse model performance spatially across GB, the four evaluation metrics for the best 20 

simulation (as defined by the combined rank across all four metrics) for each catchment is 

summarised in Figure 7.   

For NSE, model performance is variable across the country but generally, better model 

performance is found in the wetter catchments in the North and West of GB, with poorer 

model performance in drier catchments in the South and East.  Model performance is poor in 25 

groundwater dominated areas, particularly in the underlying chalk regions in the South East.  

This region has particularly low runoff coefficients (see Figure 4d) and does not maintain 

mass balance with large water losses.  Consequently, results for RRBIAS shows that the 

model tends to over-estimate flows in the South-East.   While bias in the runoff ratio shows 

the model is generally over-estimating flows, biases in the low flow volume is a more mixed 30 

picture with the model under-estimating low flows in some locations, particularly in the 

Midlands and North East Scotland.  From Figure 4d, these areas are characterised by 

particularly low flow duration curve slopes suggesting strongly damped flow responses with 

high baseflow.  Flow in the Midlands region is heavily regulated by reservoirs which sustain 

low flows and could be a potential reason for over-estimating low flows in this area.  The bias 35 

in slope of the flow duration curve shows DECIPHeR does well at reproducing the flow 

variability but tends to under-estimate the slope in Scotland suggesting that the hydrographs 

in these catchments are too smooth and not sufficiently flashy. 

3.4.4 Relationship Between Model Performance and Catchment Characteristics 

To further analyse and understand the reasons for good/poor model performance, 40 

relationships between key catchment characteristics and model performance were further 

explored.  Firstly, the catchments were grouped according to key catchment characteristics 

based on discharge; runoff coefficient and base flow index.  The 5th, 50th and 95th percentiles 

of NSE and RRBIAS were calculated from the ensemble of runs for all catchments within 

each group to explore relationships between model performance and catchment 45 

characteristics (see Table 4).  The relationship between runoff coefficient, wetness index and 
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RRBIAS was also analysed to further explore the importance of water gains/losses on model 

performance.    

There is a clear link between model performance and catchments with a low runoff 

coefficient.  Table 4 highlights poor model performance in catchments where observed runoff 

coefficients are less than 0.2.  In this group, the model always over-predicts (as shown by the 5 

RRBIAS result) and consequently leads to poor NSE scores.  Figure 8 shows that for many 

catchments where the model over-predicts flows (and particularly for catchments with a 

runoff coefficient less than 0.2) observed potential evapotranspiration estimates are not high 

enough to account for water losses culminating in an over-estimation of flows.  This is 

unsurprising given that currently the model maintains water balance and can’t lose or gain 10 

water beyond the ‘natural’ conceptualisations of precipitation, discharge and evaporation 

dynamics.   Consequently, we are either missing a process (such as water loss due to inter-

catchment groundwater flows or anthropogenic impacts) or the data is wrong.   

Poorer model performance is also found in high BFI catchments (Table 4), however, the 

results also show we can also gain very good simulations in these types of catchments (5th 15 

percentile has a NSE score of 0.82), hence the challenge is to better understand water 

losses/gains in groundwater catchments as the first step to improve the representation of 

groundwater dynamics in the model.   

4 Outlook and Ongoing Developments 

4.1 National Scale Model Evaluation 20 

We calculated four evaluation metrics for 10,000 model simulations for 1,366 GB gauges to 

provide an initial benchmark of model performance. DECIPHeR generally performs well for 

the flow time series evaluated in this study, with better results in the West and North in wet 

catchments as compared to drier catchments in the South and East. This is a common finding 

for hydrological models, with many studies finding poor model performance and greatest 25 

water balance errors in drier catchments (Gosling and Arnell, 2011; McMillan et al., 2016; 

Newman et al., 2015; Pechlivanidis and Arheimer, 2015).  Poor model performance is these 

catchments is partially due to some of the metrics chosen in this study, for example percent 

bias is most sensitive to small absolute biases in the driest catchments when compared to 

other metrics such as absolute bias. However, positive bias in the runoff ratio could be caused 30 

by a number of factors such as under-estimation of potential evapotranspiration (there are 

other UK gridded PET products which estimate much higher potential evapotranspiration), 

inter-catchment groundwater flows, and/or human influences such as water abstraction. 

Population density is much higher in the South and East compared to the North and West so 

this regional disparity in model performance could also be explained by a greater rate of 35 

abstractions and managed watercourses which alter the flow time series.  For example, 55% 

of the effective rainfall in the Thames catchment is licensed for abstraction (Thames Water, 

2017).   

These results provide an initial test of DECIPHeR capabilities against a large sample of 

catchments, but this is only a first-order evaluation of model performance.  A more rigorous 40 

evaluation would assess the model: over different seasons (Freer et al., 2004); under changing 

climatic conditions (Fowler et al., 2016); for different hydrological extremes (Coron et al., 

2012); for multiple objectives simultaneously (Kollat et al., 2012); and, incorporate input and 

flow data uncertainty (Coxon et al., 2014; Kavetski et al., 2006; McMillan et al., 2010; 

Westerberg et al., 2016).   45 
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4.2 Characterising Spatial Heterogeneity and Connectivity 

The intended use of DECIPHeR is to determine how much spatial variability and complexity 

is required for a given set of modelling objectives. It can be run as a lumped model (1 HRU), 

semi-distributed (multiple HRUs) or fully gridded (HRU for every single grid cell). In this 

paper DECIPHeR was applied across 1,366 GB gauges, with catchment masks, 5 km input 5 

grids and three classes of accumulated area and slope as classifiers for the hydrological 

response units, resulting in a total of 133,286 HRUs. Future work needs to consider the 

appropriate spatial complexity and hydrologic connectivity needed to represent relevant 

processes (Andréassian et al., 2004; Blöschl and Sivapalan, 1995; Boyle et al., 2001; Chaney 

et al., 2016; Clark et al., 2015; Metcalfe et al., 2015; Wood et al., 1988). While this work 10 

highlights the clear potential of a computationally-efficient large-scale modelling framework 

that can run large ensembles, a balance is required to ensure computational efficiency when 

running large ensembles that also maintains sufficient spatial complexity to represent 

different hydrological processes. 

4.3 Hypothesis Testing and Model Parameterisation 15 

To demonstrate the modelling framework we implemented a single model structure, provided 

in the open source model code, in all HRUs across GB and did not experiment with different 

model structures in different parts of the landscape. This provides a good benchmark of 

DECIPHeR’s ability at the national scale across GB, but the results suggest different model 

structures are needed to represent a greater heterogeneity of hydrological responses beyond 20 

the conceptual dynamics currently implemented in this simple model. Future work will 

concentrate on adding modules to DECIPHeR to enhance performance with a focus on 

improved representation of groundwater dynamic and human influences to address poor 

model performance in catchments with a low runoff coefficient. We can gain new process 

understanding of regional differences in catchment behaviour by testing different model 25 

representations (Atkinson et al., 2002; Bai et al., 2009; Perrin et al., 2001).  

It is challenging to parameterise a national scale hydrological model. Here we simply applied 

the same parameter set across each catchment. Using this basin-by-basin approach has the 

disadvantage of producing a “patchwork quilt” of parameter fields, with discontinuities in 

parameter values across catchment boundaries. This is only effective for gauged catchments 30 

(Archfield Stacey A. et al., 2015).  Ongoing work aims to address these issues by 

implementing the multiscale parameter regionalisation (MPR) technique for DECIPHeR 

across GB. This technique links model parameters to geophysical catchment attributes 

through transfer functions applied at the finest possible resolution (Samaniego et al., 2010).  

The coefficients of the transfer functions are then calibrated, and parameters are upscaled to 35 

produce spatially consistent fields of model parameters at any resolution across the entire 

model domain. The MPR technique has been applied elsewhere, proving that it can produce 

seamless parameter fields across large domains and produce scale-invariant parameters 

(Kumar et al., 2013; Mizukami et al., 2017; Samaniego et al., 2017), which is ideal for a 

flexible framework such as DECIPHeR.      40 

5 Conclusions 

DECIPHeR is a new flexible modelling framework which can be applied from small 

catchment to continental scale for complex river basins resolving small-scale spatial 

heterogeneity and connectivity.  The model is underpinned by a flexible, computationally 

efficient framework with a number of novel features: 45 
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1. Spatial variability and connectivity - ability to modify spatial variability and 

connectivity in the model via the specification of hydrological response units with 

different topographic, landscape, input layers 

2. Model structures and parameterisations - ability to experiment with different 

model structures and parameterisations in different parts of the landscape 5 

3. Computationally efficient - grouping of hydrologically similar points in the 

landscape into hydrological response units enables faster run times 

4. Automated Build – to allow easy application over large scales 

5. Open source - the open source model code is implemented in Fortran, with a user 

manual to help researchers and/or practitioners to use the model. 10 

This paper describes the modelling framework and its key components and demonstrates the 

model’s ability to be applied a large model domain.  DECIPHeR is shown to be 

computationally efficient and perform well over large samples of gauges.  This work 

highlights the potential for catchment to continental scale predictions, by making use of 

available big datasets, advances in flexible modelling frameworks and computing power.  15 
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Code Availability 

The DECIPHeR model code is open source and freely available under the terms of the GNU 

General Public License version 3.0.  The model code is written in fortran and is provided 

through a Github repository: https://github.com/uob-hydrology/DECIPHeR. 

Persistent identifier: http://doi.org/10.5281/zenodo.1346159 5 
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Table 1. Overview of DECIPHeR’s stores, fluxes and parameters 

Stores 

SRZ Root Zone Storage  m 

SUZ Unsaturated Storage  m 

SEX Saturation Excess Storage  m 

SD Saturated Storage Deficit  m 

Internal Fluxes 

QUZ Drainage Flux  m ts-1 

QIN Upslope Input Flow  m ts-1 

QEXS Saturated Excess Flow  m ts-1 

QEXUS Precipitation Excess Flow  m ts-1 

QOF Overland Flow (sum of QEXS and QEXUS)  m ts-1 

QSAT Saturated Flow  m ts-1 

External Fluxes: Input 

P Precipitation  m ts-1 

E Potential Evapotranspiration  m ts-1 

Qobs Observed Discharge (for starting value of QSAT)  m ts-1 

External Fluxes: Output 

Qsim Simulated Discharge  m ts-1 

Model Parameters 

SZM Form of exponential decline in conductivity  m 

SRmax Maximum root zone storage  m 

SRinit Initial root zone storage  m 

Td Unsaturated zone time delay  m ts-1 

CHV Channel routing velocity  m ts-1 

ln(T0) Lateral saturated transmissivity  ln(m2 ts-1) 

Smax Maximum effective deficit of saturated zone  m 
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Table 2. Parameter Ranges  

Parameter Units Lower Bound Upper Bound 

SZM m 0.001 0.07 

SRmax m 0.005 0.15 

SRinit m 0 0.01 

Td m hr-1 0.1 40 

CHV m hr-1 250 4000 

ln(T0) ln(m2 hr-1) -7 5 

Smax m 0.2 3 
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Table 4. Summary statistics of DECIPHeR performance metrics for GB with catchments grouped by 

runoff coefficient and base flow index.  Percentiles are taken from the behavioural ensemble from all 

catchments within each group.  The column ‘N’ indicates the number of catchments in each group.  

Cells are coloured according to the thresholds outlined in section 4.3.3, green for the stricter 

threshold, yellow for the weaker threshold and red where it doesn’t meet either of the thresholds. 5 

 Runoff Coefficient Base Flow Index 

 N NSE (-) RRBias (%) N NSE RRBias 

 95th Med 5th 95th Med 5th  95th Med 5th 95th Med 5th 

0-0.2 85 -67 -5.7 0.14 73 213 996 20 0.08 0.44 0.75 -32 4.6 136 

0.2-0.4 362 -1.7 0.22 0.66 8.4 37.6 123 320 -0.1 0.56 0.80 -7.9 3.2 97 

0.4-0.6 348 0.11 0.53 0.77 -0.6 12.2 43.2 629 -0.2 0.55 0.82 -5.0 8.9 97 

0.6-0.8 352 0.25 0.65 0.84 -3.7 1.3 19.3 257 -2.2 0.40 0.81 -3.9 15 141 

>0.8 219 0.11 0.70 0.83 -24 -0.3 10.6 140 -40 -0.1 0.82 -28 41 633 
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Figure 1. Digital Terrain Analysis and simplified examples of using classification layers to discretise 

a hypothetical catchment into Hydrological Response Units, from a) the gauge network, b) landscape 

layer with a chalk outcrop for HRU 2, c) the gauge network, ungauged flow point and landscape layer 

and d) same as c with individual river reach lengths specified 5 
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Figure 2. DECIPHeR represents spatial heterogeneity in the landscape through hydrological response 

units (HRUs).  Each HRU can have a different model structure, parameters or inputs. 
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Figure 3. Simplified conceptual diagram of the model structure currently implemented in 

DECIPHeR.  All scientific notations are described in Table 1. 
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Figure 4. Hydro-climatic characteristics of 1366 GB catchments (a) Annual Rainfall (mm/year), (b) 

Annual PET (mm/year) (c) Runoff Coefficient (-), d) Slope of the Flow Duration Curve between the 

30th and 70th percentiles (-).  Min/max values on colorbars have been chosen to show clear differences 5 
between catchments. 
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Figure 5. Inputs and Outputs of Digital Terrain Analyses for GB a) 50m Hydrologically Consistent 

Digital Elevation Model, b) DECIPHeR River Network, c) Nested Catchment Mask, d) Topographic 

Index, e) 5km input grid  
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Figure 6. Percentage of catchments for each metric that meet the weaker and stricter performance 

thresholds for the entire ensemble of 10000 model simulations and from the top 1% behavioural 

ensemble of 100 model simulations generated from the combined ranking of the four metrics. 
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Figure 7. Model performance for the best simulation (as defined by the combined rank across all four 

metrics) for each evaluation metric a) NSE (-), b) Bias in Runoff Ratio (%), c) Bias in Low Flow 5 
Volume (%), and d) Bias in Slope of the Flow Duration Curve between the 30th and 70th percentile 
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Figure 8. Scatter plot of wetness index (mean annual precipitation divided by mean annual potential 

evapotranspiration), runoff coefficient (mean annual discharge divided by mean annual precipitation)  

and bias in runoff ratio for each GB catchment evaluated in this study.  Any points above the 5 
horizontal dotted line are where runoff exceeds total rainfall inputs in a catchment and any points 

below the curved line are where runoff deficits exceed total PET in a catchment. 
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